• About HJC Lab
  • PI
  • Research
  • People
  • Contact us
  • 更多
    • About HJC Lab
    • PI
    • Research
    • People
    • Contact us
  • About HJC Lab
  • PI
  • Research
  • People
  • Contact us

Research

Current research

Our current research focuses on how aging processes change the new axonal connections in adult hippocampus. We have been using an inducible genetic labeling technique that allows us to control the number of labeled newborn neurons at any age throughout adult life. This mouse line (GliCreER) carries the tamoxifen-inducible CreERprotein under the control of a Sonic hedgehog-responsive Gli1 promoter element, which is specifically activated in neural precursor cells. When crossed to reporter mouse lines, GliCreERmice express fluorescent markers only in progenitors and newborn neurons in the DG. The number of labeled neurons can be controlled by the amount of tamoxifen that is injected.

Our current working hypothesis is that the developmental origin, molecular identity, cellular differentiation, and synaptic integration of neuronal progenitors are significantly changed or compromised during the aging process. We plan to systematically determine the molecular and cellular changes critical for establishing synaptic integration during AHN in young and aged brain. Despite a rich knowledge of the roles of molecular, cellular, and neural activities in regulating AHN, the reasons why neurogenesis is less efficient in the aged hippocampus are still poorly defined. We hope to identify the mechanisms that regulate the formation of newborn GCs in the aged hippocampus, thereby filling a major gap in our current understanding of neurogenesis in the aged brain.

Previous research contributions

(I) Our early research work laid the foundation for the use of AP (alkaline phosphatase) fusion protein techniques and the molecular mechanisms of topographic map in the visual system. Prior to our early research, Ephswere orphan receptors without known functions. We developed the AP fusion expression cloning techniques and identified ephrins. We then developed the RAP (receptor AP) and LAP (Ligand AP) to demonstrate Ephsand ephrinsare the “Sperry” molecules for establishing the visual topographic map. Both the AP fusion technique and the biology of Ephsand ephrinsin the formation of topographic neural circuits have contributed significantly to the progress of the field.


(II) Using mouse genetics, we generated plexin mutant mice to address the in vivo functions of semaphorin-plexin signaling in axon guidance. These studies demonstrated the differential roles of plexin family members in guiding axons in vivo, and unexpectedly revealed the role of semaphorin-plexin signaling in regulating stereotyped axon pruning in the central nervous system. 

(III) To understand the signaling pathways that regulate axon repulsion, we turned to C. elegans genetics and isolated max (motor neuron axon guidance) mutants. We identified and cloned max-1 and max-2. We demonstrated that MAX-1 is involved in AP3-mediated trafficking and degradation of UNC-5 receptor through SUMOylation regulation. We also showed that MAX-2 is a major downstream effector of RAC GTPases that are required for the repulsion of motor axons. These studies provided a foundation for investigating the role of the schizophrenia-related gene disc1 in neural development. By combining C. elegans and mouse genetics, we revealed the previously unknown function of disc1 in regulation of adult-generated neurons in the hippocampus and established a heterologous transgenic disc1 line in C. elegans.

(IV) Axon pruning in the brain had been recognized as a fundamental process for developmental plasticity, but the understanding of the molecular and cellular regulations for this process had been challenging. Focusing on the pruning events in hippocampal and visual circuits, we developed immuno-electron microscopic and imaging analysis to investigate the cellular mechanisms. These studies demonstrated that the axon branches to be pruned often form synapses, suggesting the importance of neural activity for the process.

(V) Using ferret as a model, we studied the role of neural activity in refining the anatomical and functional connections of the visual system. We had identified activity-dependent axon-axon competition as an important mechanism for axon terminal targeting during development and revealed the role of stage III retinal waves in promoting circuit refinement.

Publications

Selected research articles

  1. Cheng, H.-J. and Flanagan. J.G.. Identification and cloning of ELF-1, a developmentally-expressed ligand for the Mek4 and Sekreceptor tyrosine kinases. Cell 79:157-168. (1994)
  2. Cheng, H.-J., Nakamoto, M., Bergemann, A. D. and Flanagan, J. G.. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82:371-381. (1995)
  3. Nakamoto, M.*, Cheng, H.-J.*, Friedman, G. C., McLaughlin, T., Hansen, M. J., Yoon, C. H., O'Leary, D. D. M. and Flanagan, J. G.. Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86:755-766 . (1996) (*equal contributions)
  4. Cheng, H.-J.*, Bagri, A.*, Yaron, A., Stein, E., Pleasure, S. J., and Tessier-Lavigne, M.. Plexin-A3 Mediates SemaphorinSignaling and Regulates the Development of Hippocampal Axonal Projections. Neuron 32:249-63. (2001) (*equal contributions)
  5. Bagri, A. *, Cheng, H.-J. *, Yaron, A., Pleasure, S. J., and Tessier-Lavigne, M.. Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the Semaphorinfamily. Cell 113: 285-299. (2003) (*equal contributions)
  6. Yaron, A, , Huang, P.-H., Cheng, H.-J.*, and Tessier-Lavigne, M.*. Differential requirement for Plexin-A3 and -A4 in mediating responses of sensory and sympathetic neurons to distinct class 3 Semaphorins. Neuron 45:513-523 (2005) (*co-senior authors)
  7. Liu, X.-B., Low, L. K., Jones, E. G., and Cheng, H.-J.. Stereotyped Axon Pruning via Plexin Signaling is Associated with Synaptic Complex Elimination in the Hippocampus. J. Neurosci. 25:9124-9134 (2005)
  8. Lucanic, M., Kiley, M., Ashcroft, N., LEtoile, N. and Cheng H.-J.. The C. elegans p21 activated kinases are differentially required for UNC-6/Netrin mediated commissural motor axon guidance. Development 133:4549-4559 (2006)
  9. Waimey, K.E., Huang, P.-H., Chen, M. and Cheng, H.-J. Plexin-A3 and plexin-A4 restrict the migration of sympathetic neurons but not their neural crest precursors. Developmental Biology 315:448-458 (2008)
  10. Low, L. K., Liu, X.-B., Faulkner, R. L., Coble, J., and Cheng, H.-J.. Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex. Proc. Natl. Acad. Sci. USA 105:8136-8141 (2008)
  11. Faulkner, R. L., Jang, M.-H., Liu, X.-B., Duan, X., Sailor, K. A., Kim, J. Y., Ge, S., Jones, E. G., Ming, G.-L., Song, H., and Cheng, H.-J.. Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc. Natl. Acad. Sci. USA 105:14157- 14162 (2008)
  12. Vanderhaeghen, P. and Cheng, H.-J.. Guidance molecules in axon pruning and cell death. Cold Spring Harb. Perspect. Biol. 2:a001859 (2010)
  13. Cheng, T.-W., Liu, X.-B., Faulkner, R. L., Stephan, A. H., Barres, B. A., Huberman, A. D., and Cheng H.-J.. Emergence of lamina-specific retinal ganglion cell connectivity by axon arbor retraction and synapse elimination. J. Neurosci. 30:16376-16382 (2010).
  14. Chen, S.-Y., Huang, P.-H. and Cheng, H.-J.. Disrupted-in-Schizophrenia 1-mediated axon guidance involves TRIO-RAC-PAK small GTPase pathway signaling. Proc. Natl. Acad. Sci. USA 108: 5861-5866 (2011).
  15. Liu, W.-W., Chen, S.-Y., Cheng, C.-H., Cheng, H.-J.* and Huang, P.-H.*. Blm-s, a BH3-only protein enriched in postmitotic immature neurons, is transcriptionally upregulated by p53 during DNA damage. Cell Reports 9: 166-79 (2014). (*Co-corresponding authors)
  16. Failor, S., Chapman, B., and Cheng, H.-J.. Retinal waves regulate afferent terminal targeting in the early visual pathway. Proc. Natl. Acad. Sci. USA 112: E2957-E2966 (2015).
  17. Davis, Z.W., Chapman, B., and Cheng, H.-J.. Increasing spontaneous retinal activity before eye opening accelerates the development of geniculate receptive fields. J. Neurosci. 35:14612-14623 (2015).
  18. Failor, S., Ng, A., and Cheng, H.-J.. Monocular enucleation alters retinal waves in the surviving eye. Neural Development 13:4 (2018).
  19. Chen, S.-Y., Ho, C.-T., Liu, W.-W., Lucanic, M., Shih, H.-M., Huang, P.-H. and Cheng, H.-J.. Regulation of axon repulsion by MAX-1 SUMOylation and AP-3. Proc. Natl. Acad. Sci. USA 115: E8236-E8245 (2018).
  20. Murray, K.D., Liu, X.-B., King, A.N., Luu, J. and Cheng, H.-J.. Age-related changes in synaptic plasticity associated with mossy fiber terminal integration during adult neurogenesis. eNeuro7(3):ENEURO.0030-20 (2020).
  21. Huang, P.-H., Yang, T.-Y., Yeh, C.-W., Huang, S.-M., Chang, H.-C., Hung, Y.-F., Chu, W.-C., Cho, K.-H., Lu, T.-P., Kuo, P.-H., Lee, L.-J., Kuo, L.-W., Lien, C.-C., and Cheng, H.-J.. Involvement of a BH3-only apoptosis sensitizer gene Blm-s in hippocampus-mediated mood control. Translational Psychiatry 12:411 (2022).
  22. Lin, Y. H., Wang, L. W., Chen, Y. H., Chan, Y. C., Hu, S. H., Wu, S. Y., Chiang, C. S., Huang, G. J., Yang, S. D., Chu, S. W., Wang, K. C., Lin, C. H., Huang, P. H., Cheng, H.-J., Chen, B. C., and Chu, L. A.  Revealing intact neuronal circuitry in centimeter-sized formalin-fixed paraffin-embedded brain. eLife: 13: RP93212 (2024).
  23. Sun, Y., Wang, X., Zhang, D.Y., Zhang, Z., Bhattarai, J.P., Wang, Y., Park, K.H., Dong, W., Hung, Y.F., Yang, Q., Zhang, F., Rajamani, K., Mu, S., Kennedy, B.C., Hong, Y., Galanaugh, J., Sambangi, A., Kim,S.H., Wheeler, G., Gonçalves, T., Wang, Q., Geschwind, D.H., Kawaguchi, R., Viaene, A.N., Helbig, I., Kessler, S.K., Hoke, A., Wang, H., Xu, F., Binder, Z.A., Chen, H.I., Pai, E.L., Stone, S., Nasrallah, M.P., Christian, K.M., Fuccillo, M., Toni, N., Wu, Z., Cheng, H.-J., O'Rourke D.M., Ma, M., Ming, G.L., and Song, H..  Brain-wide neuronal circuit connectome of human glioblastoma. Nature: doi: 10.1038/s41586-025-08634-7 Online ahead of print (2025).
  24. Vafaeva, O., Namchaiw, P., Murray, K., Diaz, E., and Cheng, H.-J..  Protocol for culturing neurospheres from progenitor cells in the dentate gyrus of aged mouse hippocampus. STAR Protoc. 6(1): 103692 (2025).


Reports

20230627

熱愛一件事就是 24 小時都會想到它—專訪程淮榮

https://research.sinica.edu.tw/research-journey-adult-neurogenesis-hwai-jong-cheng/


20230427

研之有物: 當神經元遇見真愛!突觸形成的奇妙旅程

https://research.sinica.edu.tw/axon-guidance-synapse-hwai-jong-cheng/


20200915 

科學月刊465期:從軸突的相關研究來探討神經網路如何形成

https://www.scimonth.com.tw/tw/article/show.aspx?num=4565&root=5&page=1


20031103

The Scientist Magazine: Cutting Neurons Down To Size

https://www.the-scientist.com/feature/cutting-neurons-down-to-size-50800


19961206

Sience Volume 274, Number 5293, pp. 1637: Pharmacia Biotech & Science Prize

Grand Prize Winner

https://www.sciencemag.org/site/feature/data/pharmacia/1996.xhtml

Lecture

20230504 

NPAS Imaging workshop

Lecture

20221216

中央研究院 跨縣市科普演講 金門場

Lecture

20220818

Axon Guidance -- A Love Story by HJ 

Lecture

20201005

台灣大學神經生物與認知科學研究中心 演講

mKH1 (test)

chenglab

Copyright © 2025 chenglab — 保留所有權利。

提供者:

此網站使用 cookie。

我們會使用 cookie 分析網站流量,並為您最佳化網站的使用體驗。您接受我們使用 cookie,即表示您的資料會和其他使用者的資料進行整合。

接受